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Abstract—For a continuously changing flow field of a binary mixture assumed to be in local chemical
equilibrium, the concentration of species is uniquely determined by the law of mass-action as a function
of any two independent thermodynamic variables such as temperature and pressure. This implies infinite
large reaction rates leading to indefinite production rates of species. The partial continuity equation is
superfluous being replaced by the law of mass-action. This partial continuity equation on the other hand
can be used in connection with the other flow equations as well as the law of mass-action to determine
this production rate in equilibrium state. Further on, it is shown that for a flat plate boundary layer flow
under certain assumptions the profile m%52/u is a similar profile which can be put into a nearly closed
analytical form. In this expression, m% is the production rate of species 4, é the boundary layer thickness and
u the viscosity. This equilibrium profile as well as the equilibrium profiles of concentration and temperature
are compared with corresponding nonequilibrium profiles. The equilibrium profiles appear to be limiting
profiles approached asymptotically at infinite distances.

NOMENCLATURE R, individual gas constant for molecular
atom; component ;
molecule ; T, absolute temperature;
frozen specific heat of mixture ; Tp. characteristic dissociation temperature;
binary diffusion coefficient ; u, v, x-and y-components of velocity;
enthalpy ; U, ufuy;
h/hy; X, catalytic body:
total enthalpy, h, = h + u?/2; x,y, coordinates parallel and normal to the
diffusion flux of atoms; plate.

equilibrium constant ;
specific rate coefficient for surface reac-  Greek symbols

tion; o, atom mass-fraction;

specific dissociation rate coefficient ; Ty myulp;

specific recombination rate coefficient; 6,, momentum loss thickness;
Lewis-number ; o, boundary layer thickness;
molecular weight ; n.  y/é;

Mach-number ; 8, T/T;

production rate of atoms per unit 4,  thermal conductivity of mixture;
volume; 4, dynamic viscosity of mixture ;
static pressure ; p,  mass density of mixture;
characteristic dissociation pressure ; 7,  shear stress, T = u du/dy;
Prandti-number ; 7,  local relaxation time;

energy flux; ¥.  defined by equation (2.9).
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Subscripts
A, denotes atom or component A4 resp.:
w, denotes wall conditions;
8. denotes conditions at outer edge of
boundary layer;
*  denotes equilibrium conditions.

1, INTRODUCTION
CHEMICALLY reacting flows are nonequilibrium
flows in general. To reach chemical equilibrium
all reactions require molecular collisions and
hence a certain characteristic time. From the
kinetic viewpoint, the chemical equilibrium state
is approached asymptotically. This means that
the assumption of local chemical equilibrium
can never be realized exactly in a continuously
changing flow field. Nevertheless in many cases
the concept of equilibrium flow is a valid
working approximation. This implies that the
characteristic time for a chemical reaction (i.e.
the relaxation time defined later) is negligible
small compared to a characteristic flow time.

Evidently for the genmeral case of a non-
equilibrium flow the chemical kinetics are able
to answer the question how the production terms
or mass rates of formation of species are in-
influenced by the flow variables (e.g. temperature,
density or pressure and concentration). But
the so-called collision theory is not able to do
this in the limiting case of an equilibrjum flow,
because this case is unrealistic from the kinetic
viewpoint.

In the following the problem determining these
equilibrium production terms is discussed. It
seems to be evident that the equilibrium
production terms do not vanish in a continuously
changing flow field, because the local thermo-
dynamic state and therefore the equilibrium
concentrations vary from point to point.

For simplicity a binary mixture is chosen for
all further considerations. At the end of this
article the extension to multicomponent mixtures
is briefly discussed.

A fluid flow field containing two components
is described by the following set of partial dif-
ferential equations:
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The overall continuity-equation.

the partial continuity-equation for one com-
ponent,

the momentum-equation and

the energy-equation.

The unknown field variables are the velocity
vector, two thermodynamic state variables (e.g.
temperature and pressure) and the concentration
of one component.

2 PARTIAL CONTINUITY EQUATION AND

PRODUCTION TERM

The partial continuity-equation written for

the component A is

— = ~div], + m, 2.1

P Jatmy (2.1

This equation describes the total change of the

concentration « which is equal to the sum of a

diffusion and a production term. Here « is the

mass concentration defined by

%= pulp.

In order to discuss the production term a
special reaction is chosen. This reaction shall be
the dissociation-recombination reaction of a
diatomic gas A, (oxygen or nitrogen)

2.2)

Ay + X—L—) 24 + X,
ky(T)

which is used too for an example below. Therein
X is a catalytic body, it can be a molecule A, or
an atom 4. The reaction rate constants k. and k,
for the forward (dissociation) and backward
{recombination) reactionare semiemoirical func-
tions of the temperature. Both are related to each
other by the equilibrium constant

2.3

K(T) =+ 2.4

b
This equilibrium constant is defined by the
concentrations [...]* in number of moles per
volume (*means equilibrium state) as follows
2%

= 25
1 —a* M, (2:3)
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whereby the concentration in number of moles
per volume is replaced by the atom mass-
fraction a (2.2). Equation (2.5) is the so-called
law of mass-action. When K (T) is given the
equilibrium concentration is known as a function
of temperature and density or pressure.

For the reaction considered, equation (2.3),
the chemical rate equation is given from chemical
kinetics by the collision theory. Here the pro-
duction of atoms in mass per unit volume and
time is, see e.g. [1]:

2

p(1+oz)[ l-«ao P
m(’Ia)= k ._k__a
AP M, |2 "M,

2 2
=£’.£211;‘_°‘)k,{1 ~a -(f;) (1 —a*)]- 26)
My

In the second form the reaction rate constant k,
is replaced by k, and K, through equation (2.4)
or a* through equation (2.5) resp. It has to be
noticed that the above chemical rate equation
makes no difference between the two possible

catalytic bodies A, or 4. Otherwise the rate-

equation would contain two different reaction
rate constants k, resp. k,, see [1]. For the follow-
ing considerations the simplified equation (2.6)
can be used as well as the complete one.

In order to discuss the production term m , for
two limiting cases, “‘equilibrium” and “frozen
flow™, the diffusion term in equation (2.1) is
neglected for simplicity. Then we have

de  m,

—-_EFA-

T Q2.7

That means that to total change of concentration
is only affected by the chemical reaction.
Following [1] a local characteristic time 7 of the
rate process is defined by

1

@ Jo0)r.,

7 is shortly called the local relaxation time. If we
write

T po)= 2.8)

_ATpa
4 (T p,a)

2.9
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a second function is defined by
Iy
Tpo)= — —=>— (210
(T2 = = GF Jodry )

Generally in equation (2.9) the nominator-
function y describes the departiire from the local
equilibrium whereas the denominator-function
1, the local relaxation time, renders information
about how fast this local equilibrium state is
approached. Both values are functions of the
thermodynamic state (e.g. temperature and
pressure) as well as of the nonequilibrium
variable o, the concentration. They depend on the
reaction considered, from equation (2.6)it follows
in our case

2M,

T o1 + k1 + 2a(1 — a®ja*?] @11

T

l—a-(1-0a% (o/a*®)?
1+ 2a(l — a%)a*?

Now one notices the important fact that the
local relaxation time t and the reaction rate
constant k (or k, because of k, ~ k,, see equa-
tion (2.4)) are related by 7 ~ 1/k,, which
generally holds.

(212

3. EQUILIBRIUM AND FROZEN FLOW

Following [1], two limiting cases t — 0 and
T — oo shall be discussed. If the relaxation time
7 is vanishingly small, the reaction rate constant
k, becomes infinitely large. This follows from
equation (2.11) for finite density. It is physically
evident that the production term I', cannot be
infinitely large in a reacting and continuously
changing flow field. Therefore the assumption
of a finite production term I' , together witht — 0
leads to the result y — 0 from equation (2.9). If
the nominator-function y is zero it follows from
equation (2.12) that the nonequilibrium con-
centration o must tend towards its equilibrium
value a*. Generally the statement ¥(7,p, o) = 0
defines the equilibrium value o* (7, p) corres-
ponding to the law of mass-action.

We thus see that the limit 7 — 0leads to a flow
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which is in local chemical equilibrium, we call
it an “‘equilibrium flow™. The quotation marks
are used because actually the limit of “equili-
brium flow™ can never be physically realized
from the kinetic viewpoint. Nevertheless, this
limit is a good approximation when the reaction
is very fast and the flow is very slow. The impor-
tant conclusion is that the production term is
indefinite in an “equilibrium flow™, because of
7 = 0 and ¥ = 0 in equation (2.9).

It should be noted clearly that “equilibrium
flow” is essentially different from simple equili-
brium in a closed system at fixed conditions. An
“equilibrium flow™ is in other words an epen
svstem which is locally in chemical equilibrium
state. All flow variables change continuously:
the equilibrium concentration «* as well as the
indefinite equilibrium production term I'% are
field variables. In a closed system at fixed
conditions, on the other hand, there are no
changes of the variables, the equilibrium con-
centration is constant and the production term
is zero.

If, on the other hand. the relaxation time t is
infinitely large, the reaction rate constant k,
becomes infinitely small. Therefore the produc-
tion term vanishes, irrespective of the value of
7. The reaction in the flow is called a frozen
reaction, shortly we speak of a “frozen flow™.
Here the quotation marks indicate just as in the
other limit t — 0, that a “frozen flow” can never
be realized exactly from the molecular view-
point. Nevertheless it is a good approximation
if a very slow reaction takes place in high
velocity fluid flow. Neglecting diffusion as in
equation (2.6) the fact I, = 0 leads to constant
concentration. Generally in a “frozen flow™ the
concentration is affected only by diffusion.
see equation (2.1).

In the following, we are interested in the limit
7 — 0, the case of “equilibrium flow”. Especially
the question, how the unknown equilibrium
production term can be determined shall be
discussed. In order to do this we go back to the
system of governing partial differential equations
for the fluid flow.
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4. THE EQUILIBRIUM PRODUCTION TERM FOR A
SPECIAL BOUNDARY LAYER FLOW

Here we restrict our discussion to the special
case of a steady, laminar, plane and reacting
boundary layer flow along a flat plate. The
reason is that using further assumptions this
this case leads to a nearly closed form solution
for the equilibrium production term. The govern-
ing boundary laver equations are:

é ¢ .
a(pu) + E;(pz») =0 (4.1)
u:—-i- 0= N em, @)
PR TPE =& e © e
Cu cu ¢
pU— + pr—— = (43)
cy <
. ch, ¢
pU— + pv— = — (Ut — g) 4.4
¢y &y

(4.1) is the overall continuity equation and (4.2)
is the partial continuity equation neglecting
thermal diffusion. (4.3) is the momentum equa-
tion for constant pressure and (4.4) is the energy
equation written for the total enthalpy. The
energy flux g is due to a conduction and a
diffusion term. viz.

~ A

cT %t
—gq=i—+pDlh, —hy) —. (4
q A6y+p(,, hM)F_v {4.5)

For giveninitial and boundary conditions this set
of equations has to be solved for nonequilibrium
flows. The source term m , is given from chemical
kinetics by an equation like (2.6). The unknown
field variables are the velocity components u and
v, one thermodynamic variable {h, or h or T or p)
and the atom mass-fraction .

How does this set of equations change for
the two limits discussed? For the “frozen flow™
we haveto put m, = 0. The convective change of
concentration is only influenced by diffusion.

In the limit t — 0. the “equilibrium flow™.
the reaction rates are assumed so fast that the
concentration is uniquely determined by any
two independent thermodynamic variables such
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as pressure and temperature. For this case the
partial continuity equation is superfluous, it is
replaced by an algebraic equation o = a*(T, p),
the law of mass-action. Of course the partial
continuity equation remains valid for “equili-
brium flows™, since it is a balance-equation for
the species. We cannot, however, use this
equation to calculate “‘equilibrium flows™, since
the production term is indefinite as discussed
above. If, on the other hand, the production
term were not undetermined the set of equations
would be overdetermined. We would have five
equations, the fluid flow equations (4.1} +(4.4) and
the law of mass-action (2.5), to calculate the four
unknowns u, v, h, (or h or Tor p) and a*.

The following conclusion can be drawn from
this consideration : The partial continuity equa-
tion represents the equation to determine the
production term of “‘equilibrium flows”. Hence

we write :
(p 2 )( .6)

The equilibrium production term m¥% therefore
depends on the unknown field variables w, v, p
and a*. These variables are determined by the
other balance equations, the overall continuity
equation (4.1), the momentum equation (4.3)
and the energy equation (4.4), together with the
law of mass-action (2.5). This statement is not
only valid for the particular flow considered
above, it is generally valid for reacting *‘equili-
brium flows” so long as a binary mixture is
considered. Further below the extension to
multicomponent mixtures is discussed.
Generally the set of equations (4.1), (4.3), (4.4)
and (2.5) must be solved numerically if special
initial and boundary conditions are given. With
known values w. v, p and a* = f(x, y) the equili-
brium production term then follows from equa-
tion (4.6) as m¥%(x. y). By making some additional
assumptions, however, we can simplify the
problem considerably. At the end we then find
a nearly closed form solution for a characteristic
dimensionless parameter containing m*.

e, ar @
P TP T
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From a thermal and a caloric equation of
state we obtain relations p(T. p, o) and h (T p. a).
The mixture is assumed to behave as a Lighthill
gas, so we have

p=(1+ a)pRT
=[4 + «(1 + TH/T]RT

.7
(4.8)

Thelaw of mass-action (2.5) vields theequilibrium
atom mass-fraction a*(T; p), here we have for the

Lighthill gas
_— . 49
[1 + oo T exp T 4.9)

For “equilibrium flows” thus follows ¢ = p(T,
p) and h = KT, p). Using this the variable m%
is a function of the velocity and temperature (or
enthalpy)field alone. In the next step we eliminate
the enthalpy through the velocity field by means
of the Crocco-integral, which is a special solution
of the energy-equation (4.4). To obtain this solu-
tion the Prandtl- and Lewis-number defined by

Pr= EE- Le = pDS,

A A
are introduced into the energy equation (¢, =
(4 + o) R is the frozen specific heat of the mix-
ture). Assuming Pr = Le =1 this leads to

u%+ vi}ﬁ—i Oh,
-r pé’y_ay uﬁy

(see [2], p. 117). Now the well-known Crocco
relationship between enthalpy and velocity
field holds, if the further assumption of constant
wall enthalpy is made:

4.10)

2

“ U(l - U).
(4.11)

We introduced here: H = h/h; and U= ufu,.
The atom mass-fraction a* in (4.6) is replaced by
Tand p, see (4.9), then the temperature is replaced
by h and p, see (4.8) and (4.9), and finally the
enthalpy is replaced by the velocity field, see
(4.11). Then it follows from (4.6) :

H=1+(H, -—1)(1—U)+
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e [0 aT oh 6u+ o
4 8T 6u pta

_i Gu (G %]

&y [Hay\aT), ah o

After differentiation of the second term this
yields by using the momentum equation (4.3):

| u 0 [(axt) (oY ob
- “6y6y oT ), \ 0h ), 0u|
4.12)

In the following the equivalent dimensionless
form

mis? _ _2U 2 [fax\ (20\ OH]
u  dnon|\8® J,\oH/,0U '
with ® = T/T; and n = y/d(x) is used. Applying

(4.7)—4.11) and after some rearrangement in-
dicated in the appendix the final result is:

*52 ala®) {C(U, 0, a*)
bo,a*) | d6,a®)

m* U \?
- (%)

x e(6, a*) —f(O)},
where the following abbreviations are used:
a(e*) = [4 + af (1 + Tp/TY] a*(1 — a*?)

B(B, a*) = 20%(4 + a*) + (0 + Tp/Ty3a*
x (1 — a*?)
cU.8,0% =[1 - H, + (1 — 2U) u}/(2hy)]
x[4 + aF (1 + TH/TY] 267
d(6, o*) = [26% (4 + o*) + (0 + Tp/T)*a*
x (1 — a*H]?
— (0 + T/

Ot*3)

(4.14)

e(0, a®) = 260(4 + 2*) (0 + 2T/ Ty
Ty (4 — a* — 12a*% —

f(O) = (0 + Tp/TYuj /hy.

Adopting equation (4.8) we find

0.4 + o) + axTp/T;

=T aas 10

(4.15)
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Thus the expression m%6?/u depends on the velo-
city-, the temperature- and the atom mass-
fraction-profile. The last two profiles are uniquely
related to each other by the law of mass-action or
equation (4.9) resp. and the caloric equation of
state (4.8) together with the Crocco-relationship
(4.11). So we have

p T o\|*
P 4.1
o* [1 + o BT, exp (9T>] {4.16)

44l + TYTY _
o= —2 1+ (H, —1)(l =0
_6 — ¥ 5 4.1
+ 3 U ﬂ T D

with H, (9, ) from equation (4.15). Now the
only unknown is the velocity-profile Ul(x, y).
If this is known, the a*- and #-profiles are given
by (4.16) and (4.17) and the mjéz/u profile is
given by (4.14).

Finally we assume the velocity-profile to be
similar and known by a polynomial of the
Pohlhausen-type:

U =21 — 21> + n*. (4.18)

This is a good approximation for a flat plate
boundary layer flow with constant wall condi-
tions. This last assumption leads to theresult, that
the «*- and #-profiles are similar as well as the
m*%d%/u-profile. So we have the statement

* 52
'"‘5 (4.19)

=f(m

for the particular boundary layer flow considered
and the assumptions that were made. Because of
6 ~ /xand u = pfn) we find for the equilibrium
production term

F(n)

*
my, = -~
4 X

(4.20)

==

The equilibrium production term decreases with
increasing distance from the leading edge, for
x — o¢ it follows m%§ — 0.
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5. EXAMPLE

It would be interesting to compare in an
example the discussed “equilibrium” with cor-
respondingnonequilibrium profiles. Theexample
chosen has been treated first by Chung and
Anderson [3] with an integral method. The wall
is assumed to be adiabatic and non catalytic, the
fluid is oxygen with the characteristic data

T, = 59500K

pp = 233 x 107 bar

‘MA = 16 g/mol.
The boundary conditions are

T, = 218K corresponding to

ps = 1112 x 1072 bar ( 100000 ft altitude
Ma, = 15

aa = 0.

It has to be noticed that the wall temperature.is
not given explicitly if the wall is adiabatic.
The wall temperature follows from equation
(4.5) for the condition of zero wall heat flux
after some rearrangements and using certain
assumptions made in section 4. This leads to

0u(qu = 0) = z—— {[4 + al + Ty/T))]

x [1 + u}/(2hy] — o, Tp/T,}

see [4]. With 6,(a,) from the above equation
and «,(6,) by (4.16) the unknowns 6, and a,,
can be determined. For the special case
a, = 0; =0 one obtains the well-known
relationship 6,, = 1 + uZ/(2h,) valid for Pr = 1.
In the following two different calculations, the
‘“equilibrium™ and the nonequilibrium case,
are compared with each other. For the “equili-
brium flow” considered here the interesting
profiles (a*, 0* and m¥%6%/u) are given by the
equations (4.16), (4.17) and (4.14). These are
similar profiles as we have discussed.

In contrast to the “equilibrium flow” the
calculations of the nonequilibrium profiles is
much more complex. The full set of equations
(4.1)-(4.49) has to be solved. This has been done
by the author [4] with an integral method
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similar to that of Chung and Anderson [3].
This integral method [4], which is also described
in [5], is more general with regard to different
boundary conditions than the method of [3],
which is only applicable for an adiabatic and
noncatalytic wall. Further on the assumptions
made here correspond to those made in the
method of [4, 5]. This integral method is based
on the Crocco-relationship between enthalpy
and velocity profile for unity Prandtl- and
Lewis-number. The velocity profile is assumed
to be given by a polynomial like equation
(4.18) and a trial solution is made for the un-
known atom mass-fraction profile. The shape
parameter and a characteristic boundary-layer
thickness of the atom-fraction profile are
obtained from integral relations for momentum
and diffusion.

10

05

0 01 02 03

FiG. 1. Atom mass-fraction profiles.
1‘0 T T T T

—_—

50

F1G. 2. Temperature profiles.
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Figures 1 and 2 show the equilibrium profiles
of atom mass-fraction and temperature. Both
are compared with the corresponding non-
equilibrium profiles, which naturally are non-
similar. Near the leading edge the dissociation
reaction dominates, the atom mass-fraction
profile grows rapidly whereas the temperature
profile becomes more slender because energy is
absorbed by the reaction. The development of
the atom mass-fraction and temperature at the
wall with increasing distance from the leading

05 T T
___________ a_&___.._..._.____
Aw Aw
0-25 N
0 0 5 10 x m 15
F1G. 3. Atom mass-fraction at the wall.
50 T T !
40+ J
Ow
30 -
20+ Ow 4
10 Ow
0 0 5 10 15

F1G. 4. Wall temperature.

edge is shown in Figs. 3 and 4. First the atom
mass-fraction at the wall grows rapidly and it
obviously tends asymptotically towards its
equilibrium value for very large distances. The
decreasing wall temperature shows the analo-
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gous behaviour. Not only the equilibrium values
at the wall but the complete equilibrium profiles
appear to be limiting profiles which seem to be
approached by the nonequilibrium profiles at
infinity. The overlapping of the nonequilibrium
profiles with the corresponding equilibrium
profile near the outer edge of boundary layer is
possibly due to the simple trial solution made
for the nonequilibrium atom mass-fraction
profile. see [4, 5].

For the example considered the flow evidently
is still far from local chemical equilibrium state
except for very large distances from the leading
edge. The difference of the atom mass-fraction
at the wall from its equilibrium value is still
about 20 per cent at x = Sm and about 10 per
cent at x = 35 m. Therefore the assumption of
local equilibrium is only approximately valid
for even large distances.

Figure 5 shows the actually interesting profiles
of the production term in the discussed
characteristic dimensionless form. Under the
assumptions we have made the equilibrium
profile is similar whereas the nonequilibrium
profile varies with the distance x. Positive
production means that more atoms than mole-
cules are produced by the reaction or that the
dissociation-reaction predominates. This is the
case in regions of high temperature and hence in
regions near the wall. Toward the outer edge of
boundary- layer the temperature decreases and
the production term becomes negative. This
means that the recombination-reaction pre-
dominates there. For the nonequilibrium case
the negative part is small compared with the
positive one. Only at, large distances the
recombination-reaction becomes important.

Qualitatively the equilibrium and the non-
equilibrium profiles have the same characteristic
shape. If we compare them we have to remember
the different methods of calculation. The equili-
brium profile follows from the partial continuity
equation together with the other boundary
layer equations and the law of mass action. On
the other hand, in the nonequilibrium cal-
culation, empirical informations are needed
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for the reaction rate coefficients in the rate
equation (2.6), which influences the nonequili-
brium profiles considerably. Furthermore the
relative inaccuracy involved in the integral
method used to determine the nonequilibrium
profiles has to be taken into consideration.
Finally we are interested in the actual pro-
duction term profile. This follows from the
dimensionless expression m%6%/u if u(n) and
&(x) are known. We obtain the boundary layer
thickness from the well-known integral relation
of momentum, which for constant pressure has

the form:

There J, is the momentum loss thickness
defined by

1

2 jp
= =|—-U1-U)dn.
3 Pa( U)dn

Using the thermal and caloric equation of state.
{4.7) and {(4.8), we find for «; = 0 in our example:

1

& _[_@d+aua-v)
5 |JU+a@H —alyT)
0

The H-profile is given by the Crocco relation-
ship (4.11). Then the ratio §,/5 is constant and
known for the considered ‘‘equilibrium flow”
(the U-, a*- and #*-profiles are similar). Using
equation (4.18) for U(n) the integration of the
above integral relation leads to

8x) = 2 ool
) \/<Pa“052/5)

This result and the assumption y ~ T (w =0, 7)
corresponding to [4,5] yield, together with
m%6%/u = f(n) from equation (4.14), the in-
formation shown on Fig. 6. Here we see that the
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FI1G. 5. Profiles of production term in characteristic dimen-
sionless form.

equilibrium as well as the nonequilibrium
profile change with the distance x. The difference
between the two profiles decreases with increas-
ing distance from the leading edge, both profiles
vanish as x goes to infinity.

Another example where the wall is assumed
strongly cooled was discussed in a previous

paper [6].

10
n t 4
e=zTTITTRENTT
0.5 b -
——my
A 1 " 1
-10 -5 0 5
m, , kg/ms”

F1G. 6. Profiles of production term.

6. CONCLUSIONS

Figure 7 shall serve to summarize the results.
On the left hand side the boundary layer flow
in local chemical equilibrium for finite distance
from the leading edge is shown qualitatively.
All variables of the *equilibrium flow™ are
field-variables, the production term is finite.
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In the limit as x goes to infinity ail gradients
vanish, the variables become constant and the
production term goes to zero. Therefore the
open system with gradients changes, for x — .
into a uniformly moving open system without
gradients, which after a velocity transformation
is equivalent to a closed system.

Xtw X—oroe
\y by
—] u
X X
Ve LA IS 7z e PAELEE

u, T, e"~=const.
m; —=0

u T, a'm; = t{x,y)
m; #0

F1G. 7. Comparison between ‘“‘equilibrium flow™ with and
without gradients.

On the left hand side we have the case of
local chemical equilibrium in an open system
with continuously changing state whereas on the
right hand side we have simple equilibrium in a
closed system at fixed conditions. In other words,
on the left hand side the state of equilibrium is
assumed to exist only with respect to the chemical
reaction whereas all other dissipating non-
equilibrium processes such as the transport of
mass, heat and momentum do occur. On the
right hand side we have equilibrium in general,
all gradients and thus all transport processes
have vanished. This latter case only leads to a
vanishing production term!

Finally some related questions shall be
discussed. First let us discuss the wall boundary
condition of the partial continuity equation.
At the wall the diffusion flux, neglecting thermal
diffusion, is given by

. ox o — a*
~(dw = (PDE“JW = K. (p T a*)w-

Here the heterogeneous reaction at the wall is
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usually assumed to be a first order reaction.
K, is the specific rate coefficient for the surface
reaction, it essentially depends on the surface
material. In reality all materials are partially
catalytic, which means that K, is finite and non
zero. We call the limiting case K,, = 0 a non-
catalytic wall, the wall reaction is then frozen
and the diffusion flux at the wall is zero. For the
other limiting case K, —» oo the wall is called
catalytic, the heterogenous wall reaction is in
equilibrium. In such a case the above boundary
condition (which only holds for K, # oc) has to
be replaced by the boundary condition o, = «f.
Consequently for an “equilibrium flow” {ie. a
flow where the homogeneous reaction is in equili-
brium) the further assumption of a catalytic wall
(i.e. a wall where the heterogeneous reaction is in
equilibrium) has to be made. This leads to an
indefinite equilibrium diffusion flux at the wall
{becauseof K, — «canda,, — 2¥)corresponding
to the indefinite equilibrium production” term
m% in the flow (because of 7 — 0 and y— 0
resp. k, — oc and « — x*) we have discussed
in section 3. Both, the equilibrium diffusion flux
at the wall as well as the equilibrium production
term in the flow, follow from the boundary
laver equations in connection with the law of
mass-action.

Next we can discuss the “Thermodynamics of
Irreversible Processes™. If we neglect the
chemical viscosity (of which we know the
existence only but nothing else) the production
term is proposed to be a product of essentially
the chemical affinity (which corresponds to our
function y and which is zero for equilibrium)
and a phenomenological coefficient. This co-
efficient, which only can be determined by
chemical kinetics, is proportional to the reaction-
rate coefficient, which goes to infinity for
equilibrium flows.

Thirdly the extension to multicomponent
mixtures shall be discussed briefly. In the binary
mixture considered a single reaction takes place
and therefore we have one equilibrium constant
which determines the equilibrium-fraction of
one component. The fraction of the second
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component follows from the condition that the
sum of all fractions must be zero. If a mixture
of N components is considered we are only
able to determine the necessary number of
(N — 1) equilibrium-fractions if (N —1) in-
dependent reactions take place. In order to
illustrate this let us consider the frequently used
5-components model for air (O,, N,, O, N, NO),
where only three independent reactions
(O, =20, N,=2N, N+ O=NO) occur.
Here we need a further equation to determine
the five equilibrium-fractions. This equation,
which fixes the ratio of oxygen to nitrogen in the
initial state, can only be used if no diffusion
takes place. This condition is fulfilled if, for
instance, we want to determine the equilibrium
values behind a shock, but it is not in the
boundary-layer flow considered here. In con-
clusion we may say that the extension of the
proceeding described here to multicomponent
mixtures is possible only if (N — 1) independent
reactions take place.

Finally two papers have to be mentioned
[7,8], in which an opposite conclusion about
the same subject is drawn. Straub et al. [8]
pointed out that the production terms for
“equilibrium flows” vanish. They .argue as
follows : If a fluid flow is assumed to be in local
chemical equilibrium the chemical affinity of
the reaction is zero; on the other hand the
reaction rate constants are always finite from
the molecular viewpoint. This leads to the
result of vanishing production terms for “equili-
brium flows”. But if we agree to this argu-
mentation it follows a contradiction between
the partial continuity equation for vanishing
production term and the law of mass-action
on the other side as Schonauer et al. [7] have
proposed. The set of equations would be
overdetermined.

In the author’s opinion it seems to be reason-
able to argue as follows: If we assume a fluid
flow to be in local chemical equilibrium state,
then the chemical affinity (which is proportional
to our function y) of each reaction is zero. As a
consequence of local equilibrium state it follows

2271

for a fluid flow that the reaction rate constants
of each reaction must go to infinity (resp. the
relaxation times go to zero), as we have discussed
in section 3 for the case of a binary mixture.
It seems evident that the reaction rate constants
must be infinitely large if local chemical equili-
brium is required for a continuously changing
flow field. If, on the other hand, the reactions
are not assumed to be infinitely fast, the con-
dition of local chemical equilibrium state cannot
be fulfilled.

The conclusions drawn here for the special
case of a binary mixture lead to the following
results:

1. The production term of “equilibrium flows”
is indefinite from the viewpoint of chemical
kinetics.

2. Using the law of mass-action as well as the
other flow equations this indefinite equili-
brium production term is given by the
{(superfluous) partial continuity equation.

If “equilibrium flows™ are considered, we must
always bear in mind that the name “‘equilibrium
flow” is in reality a contradiction in terms, as
Vincenti and Kriiger ([1], p. 252) point out.
Actually this limit can never be physically
realized. Nevertheless it is a frequently used
approximation which is more or less valid. A
fluid flow can never be in local equilibrium state
but it can be very close to it. Then the chemical
affinities become very small (but not zero) and
the reaction rate constants become very large
(but not infinite).
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APPENDIX

In the following the step leading from equation (4.12) or
(4.13) resp. to equation (4.14) is described. It follows from
the law of mass-action (4.9):

far\ 0+ TyT, | .
(75),, =TE o T
from the caloric equation of state (4.8):

LY gy v T+ Ty E“*)
Em-_p— 2 + Ty 7 ) resp.

1 T/ T3\?
- (0_"'__"./__") x*(1 -~ 2*?)

4 4+ a* +

éH 2 0
30 ), 4+ a(l + TT)
and from the Crocco relationship (4.11):
¢H u,
—=1-H,+ =1 =2U).
v v Zh,,( v
Then equation (4.13) becomes, after substitution of these
expressions:
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¥4
m%4

U
=~ [+ Ty
u o

5 i%‘," + Tp/Ta*(l ~ 2*H{1 — H,, + (1 — 20)ud2hy)]]
on 2054 + 2 + (0 + T/ Ty2a™(1 — x#8) |

Differentiation leads to

*52 =
M 4+l + TyTy]
én
iy 1 — H, + (1 = 2U)u}/(2hy
[26%4 + 2% + (0 + Ty T2l — x*H]°

Sa*
x [(0 + T, TY40%2 — 62 — 2% o _ a¥(1 — x*3)
én

% (2004 + ¥ (6 + 2T/ Ty + (0 + Ty T*a*(1 — 2*d))
én (0 + Tp/Tpa*(1 — x*Hus thy ev
x o - et .
nj 20%4 + 2 + (0 + T/ T*a*(L — x*9) &y

The derivations dx*/dn and ¢6/cn can be expressed by ¢U:Cn
as follows. From equation (4.9) we have for constant pressure

(Ez* _ (’Ez‘) )
on) \e0/,én

where (Ca*/é0), is given above. Equation (4.8) leads to

20 H
@+ o = = [4+ 230+ TyT] 4 + u)*t-:;
/n C

gk

— WTy T, HI4 = 2+ T T =
n

Elimination of éa*/Cn by the given expression leads to

oo

cH
C o4 2 TYTY]@ + 29 (14 + x4
o on
+ (4T T, + H[4 + 25(1 + T, Tph 2%l — x*7)
x (8 + T,/ THi26%);
From equation (4.11) we obtain

H g eS|

an T o

If we substitute dH/@n, 66/¢n and ¢a*/dn into the expression
for m%52/u written above the final equation (4.14) is obtained.

TERMES DE PRODUCTION DANS DES ECOULEMENTS AVEC REACTION
D'EQUILIBRE, CAS D'UNE COUCHE LIMITE LAMINAIRE D’UN MELANGE BINAIRE

Résamé-—Pour un écoulement de mélange binaire en changement continu et supposé en équilibre chimique
local, la concentration des espéces est uniquement déterminée par la loi d’action de masse comme une
fonction de chacune des deux variables thermodynamiques indépendantes telles que température et
pression. Ceci implique des vitesses de réaction infiniment grandes qui conduisent & des vitesses indéfinies
de production d’espéces. L'equation de continuité est superflue étant remplacée par la loi d'action de
masse. Cette équation de continuité peut par ailleurs &tre utilisée en relation avec les autres équations aussi
bien que la loi d’action de masse pour déterminer cette vitesse de production en état d'équilibre. On
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montre que pour une couche himite sur plaque plane, sous certaines conditions, le profil m%/u est un

profil en similitude qui peut &tre mis sous une forme analytique. Dans cette expression m% est la vitesse de

production de I'espéce 4, 6 I'épaisseur de la couche limite et u la viscosité. Ce profil d’équilibre, les profils

d’équilibre de concentration et de température sont comparés avec les profils correspondants hors équilibre.

Les profils d’équilibre semblent &tre des profils limites, approchés asymptotiquement & des distances
infinies.

DIE PRODUKTIONSDICHTEN CHEMISCH REAGIERENDER
GLEICHGEWICHTSSTROMUNGEN, DISKUTIERT FUR DIE LAMINARE
GRENZSCHICHTSTROMUNG EINES BINAREN GEMISCHES

Zusammenfassung—Befindet sich ein stromendes Bindrgemisch im lokalen chemischen Gleichgewicht,
so ist dessen Konzentration durch das Massenwirkungsgesetz als Funktion zweier thermodynamischer
Variabler wie Temperatur und Druck bestimmt. Dies bedeutet unendlich grosse Reaktionsgeschwindig-
keiten, die Produktionsdichten sind unbestimmt. Das Massenwirkungsgesetz tritt an die Stelle der
partiellen Kontinuititsgleichung, die ihrerseits zusammen mit den anderen Bilanzgleichungen und dem
Massenwirkungsgesetz die Produktionsdichte im Gleichgewicht festlegt. Es wird gezeigt, dass unter
gewissen Annahmen das Profil m%62/u fiir die Grenzschichtstrémung entlang einer ebenen Platte
ahnlich ist. Darin bedeuten m% die Produktionsdichte der Teilchensorte A,  die Grenzschichtdicke und y
die Viskositdt. Dieses Gleichgewichtsprofil wie auch das der Konzentration und das der Temperatur
werden mit entsprechenden Nichtgleichgewichtsprofilen verglichen. Die Gieichgewichtsprofile scheinen
Grenzprofile darzustellen. die nach unendlich grosser Lauflinge asymptotisch erreicht werden.

CHOPOCTb OBPA3OBAHMA NPOOVHTA PEAKIIMM B XUMHNYECKMU
PEATHPYVIOIIMX PABHOBECHBIX IIOTOKAX B CJIVYAE TEYEHUA
BUHAPHOI CMECH B NOTPAHUYHOM CJOE

Amsoramns—B ciyuae HenmpepLBHO H3MEHAIOMEroCA MONA TeyeHWA OUHAPHOK CcMecH,
HaxolAmeHCA B COCTOAHKH JOKATHPHOTO XHMHYECKOTO PABHOBECHA, KOHIIEHTPAUMA PEeareHToB
OIHOBHAYHO ONpefesIAeTCA BaKOHOM AeHCTRYIOMNX MACC KaK QYHKIUA TI0GHX ABYX HE3aBHCH-
MHX TEPMOXWHAMMYECKHX MepeMeHHBIX, KaK, KalphAMep, TeMIeparypa H NaBjieHWe. ITo
osHavaer OecromeyHO GOJBIIMe CKOPOCTH peaKlMM, BHAWBaomMMne GeCKOHEMHHE CKOPOCTH
o6pasoBanHusa MPOXYKTA. Y paRHeHMe HEPABPRIBHOCTH JIA OT/EJbHHX PEareHTOR BaMEHAETCH
BHpaykeHMeM 3aKOHa JeficrByiomux Macc. C Apyroft CTOpOHH, 8TO ypaBHEHWe MOKeT OHIThL
HCIOBbBOBAHO BMECTe ¢ ADYTMMH YpaBHEHUAMH JBIKEHMS, 4 TaKsKe C BHPAMKeHHEM 3aKOHA
HefiCTBYIOIMX Macc [JIA ONpefeJeHHA CKOPOCTH 06pasoBaHMA NPOLYKTa B DPABHOBKCHOM
cocroannu. Jlamee mOKasaHO, 9TO [JIA Te4eHHA B IOFPAHMYHOM CJOe HA MJIOCKON NJIACTHHe
NpK ONpefleleHHEX AONYIIeHHAX TPpoPuib m ,*3%/u ABNAETCA ABTOMONCILHEM i MOMeT GHITL
NpuGIMHEeHHO NpeNiCTABNeH B aHAIMTHYECKOM 3aMKHYTOM BHie. B 5TOM BHparkeHHM m ,%—
CKOpPOCTb 00pa30BaHMA KOMNOHEHTa A, §—TONMMHA MOTPAHMYHOTO CIOA M u=—=BABKOCTS.
IIpoBonuTCA CpaBHEHMe 3TOTO PABHOBECHOTO NpOYUAA, a TaKwe PIBHOBECHHX npoduielt
KOHLUEHTPALNE . ¥ TeMNepaTypPH ¢ COOTBETCTBYIOILMMM HepaBHOBeCHHMH npofuiamn. Wa
CPAaBHEHVA BUIHO, YTO PaBHOBeCHH NMPOPUIN ABJIAKTCA NpPENENOM, K KOTODOMY Tpubim-
MAIOTCH HEPaBHOBECHHE NPOPNAN NPH YCTPEMICHWM KOOPANHATH K GeCKOHeYHOCTH.
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