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Abslract-For a continuously changing flow field of a binary mixture assumed to be in local chemical 
equilibrium, the concentration of species is uniquely determined by the law of mass-action as a function 
of any two independent thermodynamic variables such as temperature and pressure. This implies infinite 
large reaction rates leading to indefinite production rates of species. The partial continuity equation is 
superfluous being replaced by the law of mass-action. Thii partial continuity equation on the other hand 
can be used in connection with the other flow equations as well as the law of mass-action to determine 
this production rate in equilibrium state. Further on, it is shown that for a flat plate boundary layer flow 
under certain assumptions the profile mfa’/p is a similar profile which can be put into a nearly closed 
analytical form. In this expression, mf; is the production rate of species A, 6 the boundary layer thickness and 
p the viscosity. This equilibrium profile as well as the equilibrium profiles of concentration and temperature 
are compared with corresponding nonequilibrium profiles. The equilibrium profiles appear to be limiting 

proliles approached asymptotically at infinite distances. 

NOMENCLATURE 

atom ; 
molecule ; 
frozen specific heat of mixture ; 
binary diffusion coefficient ; 
enthalpy ; 

hfh, ; 
total enthalpy, h, = h + u2/2 ; 
difision flux of atoms ; 
equilibrium constant ; 

individual gas constant for molecular 
component ; 
absolute temperature ; 
characteristic dissociation temperature ; 
x- and y-components of velocity ; 

u/u,; 
catalytic body ; 
coordinates parallel and normal to the 
plate. 

specific rate coefficient for surface reac- Greek symbols 
tion ; 
specific dissociation rate coefftcient ; 
specific recombination rate coefficient ; 6 
Lewis-number ; a,’ 
molecular weight ; tlv 
Mach-number ; $7 
production rate of atoms per unit 1, 
volume ; u 
static pressure ; P? 
characteristic dissociation pressure : 7. 
Prandtl-number ; T, 
energy flux ; 211 
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atom mass-fraction ; 
mJp; 
momentum loss thickness ; 
boundary layer thickness ; 

Y/d ; 
TIT,; 
thermal conductivity of mixture ; 
dynamic viscosity of mixture ; 
mass density of mixture ; 
shear stress, T = p &@y ; 
local relaxation time ; 
defined by equation (2.9). 
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Subscripts 
A, denotes atom or component A 

denotes wall conditions ; 
denotes conditions at outer 
boundary layer c 

resp. : 
The overall continuity-equation. 
the partial continuity-equation for one com- 
ponent, 

edge of the mome~~m-~uation and 
the energy-equation. 

* , denotes equilibrium conditions. 

1. ~~TRODU~ON 

(ZXXEMICALLY reacting flows are nonequilibrium 
flows in general. To reach chemical equilibrium 
all reactions require molecular collisions and 
hence a certain characteristic time. From the 
kinetic viewpoint, the chemical equilibrium state 
is approached asymptotically. This means that 
the adoption of local chemical ~uilib~um 
can never be realized exactly in a continuously 
changing flow field. Nevertheless in many cases 
the concept of equilibrium flow is a valid 
working approximation. This implies that the 
characteristic time for a chemical reaction (i.e. 
the relaxation time defined later) is negligible 
small compared to a characteristic flow time. 

Evidently for the general case of a non- 
equilibrium flow the chemical kinetics are able 
to answer thequestion how the production terms 
or mass rates of formation of species are in- 
influenced by the flow variables (e.g. temperature, 
density or pressure and concentration). But 
the so-called collision theory is not able to do 
this in the limiting case of an equilibrium flow, 
because this case is unrealistic from the kinetic 
viewpoint. 

In the fo~owing the problem dete~ning these 
equilibrium production terms is discussed. It 
seems to be evident that the equilibrium 
production terms do not vanish in a continuously 
changing flow field, because the local thermo- 
dynamic state and therefore the equilibrium 
concentrations vary from point to point. 

For simplicity a binary mixture is chosen for 
all further considerations. At the end of this 
article the extension to multicomponent mixtures 
is briefly discussed. 

A fluid flow geld containing two components 
is described by the following set of partial dif- 
ferential equations : 

The unknown field variables are the velocity 
vector, two ~ermodyna~~ state variables (e.g. 
temperature and pressure) and the concentration 
of one component. 

2 PARTIAL CONTINUITY EQUATION AND 
PRODUCTION TERM 

The partial continuity-equation written for 
the &omponent A is 

da 

?it- 
- - divJ’ -I- mA. (2.1) 

This equation describes the total change of the 
concentration a which is equal to the sum of a 
diffusion and a production term. Here 01 is the 
mass concentration defined by 

x = P,lP- i2.2) 

In order to discuss the production term a 
special reaction is chosen. This reaction shall be 
the dissociation-recombination reaction of a 
diatomic gas A, (oxygen or nitrogen) 

A2+X$2A+X. (2.3 
h 

which is used too for an example below. Therein 
X is a catalytic body, it can be a molecule A2 or 
an atom A. The reaction rate constants k, and k, 
for the forward (dissociation) and backward 
(recombination~ reactionaresemiemnirical func- 
tions ofthe temperature. Both are related to each 
other by the equilibrium constant 

k f G(T) = k 
b 

(2.4) 

This equilibrium constant is defined by the 
concentrations [. .J* in number of moles per 
volume (*means equilibrium state) as follows 

[A]*” 2a*” p 
-~ -. (2.5) 
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whereby the concentration in number of moles 
per volume is replaced by the atom mass- 
fraction a (2.2). Equation (2.5) is the so-called 
law of mass-action. When K,(T) is given the 
equilibrium concentration is known as a function 
of temperature and density or pressure. 

For the reaction considered, equation (2.3), 
the chemical rate equation is given from chemical 
kinetics by the collision theory. Here the pro- 
duction of atoms in mass per unit volume and 
time is see e.g. [l] : 

m,(p, IT: a) = 
p2(1 + a) 

M” [ 

k 1 - a - - 1 
= p2(1 + 4 

2M” 
k,r[l -a -;;;2(l -kl$la(l!.6) 

In the second form the reaction rate constant k, 
is replaced by k, and K, through equation (2.4) 
or a* through equation (2.5) resp. It has to be 
noticed that the above chemical rate equation 
makes no difference between the two possible 
catalytic bodies A2 or A. Otherwise the rate 
equation would contain two different reaction 
rate constants k, resp. k, see [ 11. For the follow- 
ing considerations the simplified equation (2.6) 
can be used as well as the complete one. 

In order to discuss the production term mA for 
two limiting cases, “equilibrium” and “frozen 
flow”, the diffusion term in equation (2.1) is 
neglected for simplicity. Then we have 

da mA _r 

x=-F= A- (2.7) 

That means that to total change of concentration 
is only affected by the chemical reaction. 
Following [l] a local characteristic time r of the 
rate process is defined by 

1 
r(‘I: P? a) = - (cT~,/~a),,,’ (2.8) 

7 is shortly called the local relaxation time. If we 
write 

zKp.4 
rA = - 

7&T p, a) 
(2.9) 

a second function is defined by 

Generally in equation (2.9) the nominator- 
function x describes the departure from the local 
equilibrium whereas the denominator-function 
7, the local relaxation time, renders information 
about how fast this local equilibrium state is 
approached. Both values are functions of the 
thermodynamic state (e.g. temperature and 
pressure) as well as of the nonequilibrium 
variable a, the concentration. They depend on the 
reaction considered, fromequation (2.6)it follows 
in our case 

2-84, 

’ = ~$1 + a) k,[l + 2a (1 - a*)/a*2](2’11) 

l-a-(1 - a*) (a/a*)2 
z= 1 + 2a(l - a*)/a*2 . 

(2.12) 

Now one notices the important fact that the 
local relaxation time 7 and the reaction rate 
constant k, (or k, because of k, ‘c k,, see qua- 
tion (2.4)) are related by 7 - l/k,f, which 
generally holds. 

3. EQUXLlBRIUM AND FROZEN FLOW 

Following Cl], two limiting cases 7 + 0 and 
7 + 00 shall be discussed. If the relaxation time 
r is vanishingly small, the reaction rate constant 
k, becomes infinitely large. This follows from 
equation (2.11) for fmite density. It is physically 
evident that the production term rA cannot be 
infinitely large in a reacting and continuously 
changing flow field. Therefore the assumption 
of a fmite production term rA together with 7 + 0 
leads to the result x -, 0 from equation (2.9). If 
the nominator-function x is zero it follows from 
equation (2.12) that the nonquilibrium con- 
centration a must tend towards its equilibrium 
value a*. Generally the statement x(?; p, a) = 0 
defines the equilibrium value a* (1; p) corres- 
ponding to the law of mass-action. 

We thus see that the limit 7 + 0 leads to a flow 
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which is in local chemical equilibrium, we call 
it an “equilibrium flow”. The quotation marks 
are used because actually the limit of “equili- 
brium flow” can never be physically realized 
from the kinetic viewpoint. Nevertheless, this 
limit is a good approximation when the reaction 
is very fast and the flow is very slow. The impor- 
tant conclusion is that the production term is 
indefinite in an “equilibrium flow”, because of 
r = 0 and x = 0 in equation (2.9). 

It should be noted clearly that “equilibrium 
flow” is essentially different from simple equili- 
brium in a closed system at fixed conditions. An 
“equilibrium flow” is in other words an open 
system which is locally in chemical equilibrium 
state. All flow variables change continuously: 
the equilibrium concentration cx* as well as the 
indefinite equilibrium production term r: are 
field variables. In a closed system at fixed 
conditions, on the other hand, there are no 
changes of the variables, the equilibrium con- 
centration is constant and the production term 
is zero. 

If, on the other hand, the relaxation time r is 
infinitely large, the reaction rate constant k, 

becomes infinitely small. Therefore the produc- 
tion term vanishes. irrespective of the value of 
z. The reaction in the flow is called a frozen 
reaction, shortly we speak of a “frozen flow”. 
Here the quotation marks indicate just as in the 
other limit r -+ 0, that a “frozen flow” can never 
be realized exactly from the molecular view- 
point. Nevertheless it is a good approximation 
if a very slow reaction takes place in high 
velocity fluid flow. Neglecting diffusion as in 
equation (2.4) the fact r, s 0 leads to constant 
concentration. Generally in a “frozen how” the 
concentration is affected only by diffusion. 
see equation (2.1). 

In the following we are interested in the limit 
r -t 0, the case of “equilibrium flow”. Especially 
the question, how the unknown equilibrium 
production term can be determined shall be 
discussed. In order to do this we go back to the 
system of governing partial differential equations 
for the fluid flow. 

4. THE EQUILIBRIUM PRODUCTION TERM FOR A 
SPECIAL BOUNDARY LAYER FLOW 

Here we restrict our discussion to the special 
case of a steady, laminar, plane and reacting 
boundary layer flow along a flat plate. The 
reason is that using further assumptions this 
this case leads to a nearly closed form solution 
for the equilibrium production term. The govern- 
ing boundary layer equations are : 

(4.1) is the overall continuity equation and (4.2) 
is the partial continuity equation neglecting 
thermal diffusion. (4.3) is the momentum equa- 
tion for constant pressure and (4.4) is the energy 
equation written for the total enthalpy. The 
energy flux 4 is due to a conduction and a 
diffusion term. viz. 

For given initial and boundary conditions this set 
of equations has to be solved for nonequilibrium 
flows. The source term mA is given from chemical 
kinetics by an equation like (2.6). The unknown 
field variables are the velocity components u and 
U, one thermodynamic variable (h, or h or Tor p) 
and the atom mass-fraction z. 

How does this set of equations change for 
the two limits discussed? For the “frozen flow” 
we have to put mA s 0. The convective change of 
concentration is only influenced by diffusion. 

In the limit r -+ 0. the “equilibrium flow”. 
the reaction rates are assumed so fast that the 
concentration is uniquely determined by an! 
two independent thermodynamic variables such 



as pressure and temperature. For this case the 
partial continuity equation is superfluous, it is 
replaced by an algebraic equation a = a*(IT: p), 
the law of mass-action. Of course the partial 
continuity equation remains valid for “equili- 
brium flows”, since it is a balance-equation for 
the species. We cannot, however, use this 
equation to calculate “equilibrium flows”, since 
the production term is indefinite as discussed 
above. If, on the other hand, the production 
term were not undetermined the set of equations 
would be overdetermined. We would have live 
equations, the fluid flow equations (4.3)-(4.4) and 
the law of mass-action (2.5) to calculate the four 
unknowns u, r:, h, (or h or Tor p) and a*. 
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From a thermal and a caloric equation of 
state we obtain relations p(T, p, a) and h (T. p, a). 
The mixture is assumed to behave as a Lighthill 
gas, so we have 

p=(l +a)ppRT (4.7) 

h=[4+a(l+TJT)RT. (4.8) 

Thelaw ofmass-action (2S)yields theequilibrium 
atom mass-fraction a*( ‘I: p), here we have for the 
Lighthill gas 

a* = (4.9) 

The following conclusion can be drawn from 
this consideration : The partial continuity equa- 
tion represents the equation to determine the 
production term of “equilibrium flows”. Hence 
we write : 

For “equilibrium flows” thus follows p = P(T, 
p) and h = h(T, p). Using this the variable rnz 
is a function of the velocity and temperature (or 
enthalpy) field alone. In the next step we eliminate 
the enthalpy through the velocity field by means 
of the Crocco-integral, which is a special solution 
of the energy-equation (4.4). To obtain this solu- 
tion the Prandtl- and Lewis-number defined by i?a* i?a* CC! 

rn: = pu- w-e 

c?x + p0 ?y ay 
.(4.6) 

The equilibrium production term rn: therefore 
depends on the unknown field variables u, r:, p 
and CI*. These variables are determined by the 
other balance equations, the overall continuity 
equation (4.1), the momentum equation (4.3) 
and the energy equation (4.4), together with the 
law of mass-action (2.5). This statement is not 
only valid for the particular flow considered 
above, it is generally valid for reacting “equili- 
brium flows” so long as a binary mixture is 
considered. Further below the extension to 
multicomponent mixtures is discussed. 

Generally the set of equations (4.1), (4.3), (4.4) 
and (2.5) must be solved numerically if special 
initial and boundary conditions are given. With 
known values u. II, p and a* = f(x, y) the equili- 
brium production term then follows from equa- 
tion (4.9 as m:(x. y). By making some additional 
assumptions, however, we can simplify the 
problem considerably. At the end we then find 
a nearly closed form solution for a characteristic 
dimensionless narameter containine m?. 1 Y n 

pDE Pr=y; LeI:P 
A 

(4.10) 

are introduced into the energy equation (z,, = 
(4 + a) R is the frozen specific heat of the mix- 
ture). Assuming Pr = Le = 1 this leads to . 

(see [23, p. 117). Now the well-known Cram 
relationship between enthalpy and velocity 
field holds, if the further assumption of constant 
wall enthalpy is made : 

H = 1 + (H, - l)(l - u) + 2 U(1 - U). 
6 

(4. i 1) 

We introduced here: H zz h/h, and USE u/us. 
The atom mass-fraction a* in (4.9 is replaced by 
Tand p, see (4.9), then the temperature is replaced 
by h and p, see (4.8) and (4.9), and finally the 
enthalpy is replaced by the velocity field, see 
(4.11). Then it follows from (4.9 : 
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After differentiation of the second term this 
yields by using the momentum equation (4.3): 

(4.12) 

In the following the equivalent dimensionless 
form 

rn26’ 
- = - g; [(j$)*(~).~] (4.13) 

p 

with 0 z T/T6 and v E y/&x) is used. Applying 
(4.7H4.11) and after some rearrangement in- 
dicated in the appendix the final result is: 

rn:d2 
-+$gL{~~;l:;' 
P 

x e(&a*) -f(e) , 
1 

(4.14) 

where the following abbreviations are used : 

n(a*) = [4 + a: (1 + T&)] a*(1 - a*‘) 

b(8, a*) = 2e2(4 + a*) + (0 + TD/TJ2a* 

x(1 - 2*2) 

c( U, 8, a*) = [ 1 - H, + (1 - 2U) ui/(2fza)] 

x 14 + a,* (1 + TdTJ] 202 

d(8, a*) = [2e2 (4 + a*) + (0 + TD/TJ2a* 

x (1 - a*‘)]’ 

e(& a*) = 20(4 + ,a*) (0 + 2TJTJ - (0 + TD/ 

TJ (4 - a* - 12a*2 - a*3) 

f(e) = (0 + T,/Td U:/b 

Adopting equation (4.8) we find 

H _ 4&4 + a3 + %XbfT, 
w- 4 + a$(1 + TdTJ 

(4.15) 

Thus the expression mzd2fp depends on the veio- 
city-, the temperature- and the atom mass- 
fraction-profile.The last two profiles are uniquely 
related to each other by the law of mass-action or 
equation (4.9) resp. and the caloric equation of 
state (4.8) together with the Crocco-relationship 
(4.11). So we have 

+$J(t -U) --,- 
1 

a* TD 

4+a* & 
(4.17) 

a 

with H, (O,, c) from equation (4.15). Now the 
only unknown is the velocity-profile U(x. y). 
If this is known, the a*- and e-profiles are given 
by (4.16) and (4.17) and the m~62/~-proflle is 
given by (4.14). 

Finally we assume the velocity-profile to be 
similar and known by a polynomial of the 
Pohlhausen-type : 

wll = 2?j - 213 + 94. (4.18) 

This is a good approximation for a flat plate 
boundary layer flow with constant wall condi- 
tions. This last assumption leads to the result, that 
the a*- and &profiles are similar as well as the 
m2S2/fl-profile. So we have the statement 

rn2iS2 
- =fh) (4.19) 

p 

for the particular boundary layer flow considered 
and the assumptions that were made. Because of 
6- ,,ix and ,u = cl(q) we find for the equilibrium 
production term 

(4.20) 

The equilibrium production term decreases with 
increasing distance from the leading edge, for 
x + x it follows mf; --* 0. 
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5. EXAMPLE 

It would be interesting to compare in an 
example the discussed “equilibrium” with cof- 
respondingnonequilibriumprofiles.Theexample 
chosen has been treated first by Chung and 
Anderson [3] with an integral method. The wall 
is assumed to be adiabatic and non catalytic, the 
fluid is oxygen with the characteristic data 

TD = 59500K 

PD = 2.33 x 10’ bar 
MA = 16 g/mol. 

The boundary conditions are 

Ta = 218 K corresponding to 
= 1.12 x 10m2 bar 

ME; = 15 
1 100000 ft altitude 

ad = 0. 

It has to be noticed that the wall temperatureis 
not given explicitly if the wall is adiabatic. 
The wall temperature follows from equation 
(4.5) for the condition of zero wall heat flux 
after some rearrangements and using certain 
assumptions made in section 4. This leads to 

see [4]. With &(a,,,) from the above equation 
and a,(@,,) by (4.16) the unknowns 8, and a, 
can be determined. For the special case 
a, = ad = 0 one obtains the well-known 
relationship 8, = 1 + u$/(2&) valid for Pr = 1. 
In the following two different calculations, the 
“equilibrium” and the nonquilibrium case, 
are compared with each other. For the “equili- 
brium flow” considered here the interesting 
profiles (a*, 8* and m:S’/p) are given by the 
equations (4.16), (4.17) and (4.14). These are 
similar profiles as we have discussed. 

In contrast to the “equilibrium flow” the 
calculations of the nonquilibrium profiles is 
much more complex. The full set of equations 
(4.1X4.4) has to be solved. This has been done 
by the author [4] with an integral method 

similar to that of Chung and Anderson [3]. 
This integral method [4], which is also described 
in [S], is more general with regard to different 
boundary conditions than the method of [3], 
which is only applicable for an adiabatic and 
noncatalytic wall. Further on the assumptions 
made here correspond to those made in the 
method of [4,5]. This integral method is based 
on the Crocco-relationship between enthalpy 
and velocity profile for unity Prandtl- and 
Lewis-number. The velocity profile is assumed 
to be given by a polynomial like equation 
(4.18) and a trial solution is made for the un- 
known atom mass-fraction profile. The shape 
parameter and a characteristic boundary-layer 
thickness of the atom-fraction profile are 
obtained from integral relations for momentum 
and diffusion. 

1-o , I I I 
___ a* I 
-a 

FIG. 1. Atom mass-fraction profiles. 

FIG. 2. Temperature profiles. 
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Figures 1 and 2 show the equilibrium profiles 
of atom mass-fraction and temperature. Both 
are compared with the corresponding non- 
equilibrium profiles, which naturally are non- 
similar. Near the leading edge the dissociation 
reaction dominates, the atom mass-fraction 
profile grows rapidly whereas the temperature 
profile becomes more slender because energy is 
absorbed by the reaction. The development of 
the atom mass-fraction and temperature at the 
wall with increasing distance from the leading 

t 
_-_--_----------- ---- 

a; 1 

1 

OO 5 10 x m 15 , 

FIG. 3. Atom mass-fraction at the wail 

/ 

40 - i 

w 
30 7 

e50: 

20 @w i 

______---------------- 

10 6; 2 

OO 5 10 x m 15 

FIG. 4. Wall temperature. 

edge is shown in Figs. 3 and 4. First the atom 
mass-fraction at the wall grows rapidly and it 
obviously tends asymptotically towards its 
equilibrium value for very large distances. The 
decreasing wall temperature shows the analo- 

gous behaviour. Not only the equilibrium values 
at the wall but the complete equilibrium profiles 
appear to be limiting profiles which seem to be 
approached by the nonequilibrium profiles at 
infinity. The overlapping of the nonequilibrium 
profiles with the corresponding equilibrium 
profile near the outer edge of boundary layer is 
possibly due to the simple trial solution made 
for the nonequilibrium atom mass-fraction 
profile. see [4,5]. 

For the example considered the flow evidently 
is still far from local chemical equilibrium state 
except for very large distances from the leading 
edge. The difference of the atom mass-fraction 
at the wall from its equilibrium value is still 
about 20 per cent at x = 5 m and about 10 per 
cent at x = 35 m. Therefore the assumption of 
local equilibrium is only approximately valid 
for even large distances. 

Figure 5 shows the actually interesting profiles 
of the production term in the discussed 
characteristic dimensionless form. Under the 
assumptions we have made the equilibrium 
profile is similar whereas the nonequilibrium 
profile varies with the distance X. Positive 
production means that more atoms than mole- 
cules are produced by the reaction or that the 
dissociation-reaction predominates. This is the 
case in regions of high temperature and hence in 
regions near the wall. Toward the outer edge of 
boundary- layer the temperature decreases and 
the production term becomes negative. This 
means that the recombination-reaction pre- 
dominates there. For the nonequilibrium case 
the negative part is small compared with the 
positive one. Only at, large distances the 
recombination-reaction becomes important. 

Qualitatively the equilibrium and the non- 
equilibrium profiles have the same characteristic 
shape. If we compare them we have to remember 
the different methods of calculation. The equili- 
brium profile follows from the partial continuity 
equation together with the other boundary 
layer equations and the law of mass action. On 
the other hand, in the nonequilibrium cal- 
culation, empirical informations are needed 
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for the reaction rate coefficients in the rate 1.0 

equation (2~9, which influences the nonequili- 
brium profiles considerably. Furthermore the 
relative inaccuracy involved in the integral 

rl 

method used to determine the nonequilibrium 
c_~,_-“------- 

05 ------_____ 

profiles has to be taken into consideration. 
Finally we are interested in the actual pro- 

duction term profile. This follows from the 
dimensionless expression mfs2/p if p(q) and 
6(x) are known. We obtain the boundary layer 
thickness from the well-known integral relation 

0 J 

-10 -5 0 l 5 

of momentum, which for constant pressure has 
m,. a’/r 

the form : FIG. 5. Profiles of production term in characteristic dimen- 
sionless form. 

da2 7, 
dx=p,u,2. 

equilibrium as well as the nonequilibrium 
There 6, is the momentum loss thickness profile change with the distance x. The difference 
defined by between the two profiles decreases with increas- 

1 ing distance from the leading edge, both profiles 

62 
-= 

6 5 

;U(l - v)dq. 
vanish as x goes to infmity. 

Another example where the wall is assumed 
0 strongly cooled was discussed in a previous 

Using the thermal and caloric equation of state. 
paper C61. 

(4.7) and (4.Q we find for a6 = 0 in our example : 
1.0 , 

I I 

’ 62 -= 
b 

I 

(4+ a)U(l - U) 

(1 + a) (4H - aTdTJ dq ’ 

0 

The H-profile is given by the Crocco relation- 
ship (4.11). Then the ratio 6,/6 is constant and 
known for the considered “equilibrium flow” 
(the U-, a*- and 8*-profiles are similar). Using 
equation (4.18) for U(q) the integration of the 
above integral relationleads to 

___ mn’ 
- mA lw3 

FOG. 6. Profiles of production term. 

6. CONCLUSIONS 

Figure 7 shall serve to summariz the results. 
On the left hand side the boundary layer flow 

This result and the assumption p - T’(o = 0,7) in local chemical equilibrium for finite distance 
corresponding to [4,5] yield, together with from the leading edge is shown qualitatively. 
m’jS2/p -f(q) from equation (4.14) the in- All variables of the “equilibrium flow” are 
formation shown on Fig. 6. Here we see that the field-variables, the production term is finite. 

H 
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In the limit as x goes to infinity all gradients 
vanish, the variables become constant and the 
pr~u~tion term goes to zero. Therefore the 
open system with gradients changes, for x -+ =o. 
into a uniformly moving open system without 
gradients, which after a velocity transformation 
is equivalent to a closed system. 

xslr_ X-0 

u, T,a:mf f ffx,y) u, T, a*-amt. 

m; 80 ml -0 

FIG. 7. Comparison between “equilibrium flow” with and 
without gradients. 

On the left hand side we have the case of 
local chemical equilibrium in an open system 
with continuously changing state whereas on the 
right hand side we have simple equilibrium in a 
closed system at fixed conditions. In other words, 
on the left hand side the state of ~uilib~um is 
assumed to exist only with respect to the chemical 
reaction whereas all other dissipating non- 
equilibrium processes such as the transport of 
mass, heat and momentum do occur. On the 
right hand side we have equilibrium in general, 
alI gradients and thus all transport processes 
have vanished. This latter case only leads to a 
vanishing production term! 

Finally some related questions shall be 
discussed. First let us discuss the wall boundary 
condition of the partial continuity equation. 
At the wall the diffusion flux, neglecting thermal 
diffusion, is given by 

Here the heterogeneous reaction at the wall is 

usually assumed to be a first order reaction. 
K, is the specific rate coeflicient for the surface 
reaction, it essentially depends 00 the surface 
material. In reality all materials are partially 
catalytic, which means that K, is finite and non 
zero. We call the limiting case K, = 0 a non- 
catalytic wall, the wall reaction is then frozen 
and the diffusion flux at the wall is zero. For the 
other limiting case I(, -+ co the wall is called 
catalytic, the heterogenous wall reaction is in 
equilibrium. In such a case the above boundary 
condition (which only holds for K, f co) has to 
be replaced by the boundary condition a,,. = r$. 
Consequently for an “equilibrium flow” (i.e. a 
flow where the homogeneous reaction is in equili- 
brium) the further assumption of a catalytic wall 
(i.e. a wall where the heterogeneous reaction is in 
equilibrium) has to be made. This leads to an 
indefinite equilibrium diffusion flux at the wall 
(because of I<, + x and m, -+ 2:) corresponding 
to the indefinite equilibrium production- term 
rn: in the flow (because of 7 -+ 0 and x -, 0 
resp. Ic, -+ x and a -+ P) we have discussed 
in section 3. Both, the ~ui~b~urn diffusion flux 
at the wall as well as the equilibrium production 
term in the flow, follow from the boundary 
layer equations in connection with the law of 
mass-action. 

Next we can discuss the “~erm~yn~ics of 
Irreversible Processes”. If we neglect the 
chemical viscosity (of which we know the 
existence only but nothing else) the production 
term is proposed to be a product of essentially 
the chemical affinity (which corresponds to our 
function x and which is zero for equilibrium) 
and a phenomenological coefficient. This co- 
efficient, which only can be determined by 
chemical kinetics, is proportional to the reaction- 
rate coefficient, which goes to infinity for 
equilibrium flows. 

Thirdly the extension to multicomponent 
mixtures shall be discussed briefly. In the binary 
mixture considered a single reaction takes place 
and therefore we have one equilibrium constant 
which determines the equi~b~um-fraction of 
one component. The fraction of the second 
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component follows from the condition that the 
sum of all fractions must be zero. If a mixture 
of N components is considered we are only 
able to determine the necessary number of 
(N - 1) equilibrium-fractions if (N - 1) in- 
dependent reactions take place. In order to 
illustrate this let us consider the frequently used 
5-components model for air (O,, N,, 0, N, NO), 
where only three independent reactions 
(0, = 20, N, = 2N, N + 0 = NO) occur. 
Here we need a further equation to determine 
the five equilibrium-fractions. This equation, 
which fmes the ratio of oxygen to nitrogen in the 
initial state, can only be used if no diffusion 
takes place. This condition is fulfilled if, for 
instance, we want to determine the equilibrium 
values behind a shock, but it is not in the 
boundary-layer flow considered here. In con- 
clusion we may say that the extension of the 
proceeding described here to multicomponent 
mixtures is possible only if (N - 1) independent 
reactions take place. 

Finally two papers have to be mentioned 
[7,8], in which an opposite conclusion about 
the same subject is drawn. Straub et al. [8] 
pointed out that the production terms for 
“equilibrium flows” vanish. They argue as 
follows : If a fluid flow is assumed to be in local 
chemical equilibrium the chemical a.fIinity of 
the reaction is zero ; on the other hand the 
reaction rate constants are always finite from 
the molecular viewpoint. This leads to the 
result of vanishing production terms for “equili- 
brium flows”. But if we agree to this argu- 
mentation it follows a contradiction between 
the partial continuity equation for vanishing 
production term and the law of mass-action 
on the other side as Schiinauer et al. [7] have 
proposed. The set of equations would be 
overdetermined. 

In the author’s opinion it seems to be reason- 
able to argue as follows: If we assume a fluid 
flow to be in local chemical equilibrium state, 
then the chemical affinity (which is proportional 
to our function x) of each reaction is zero. As a 
consequence of local equilibrium state it follows 

for a fluid flow that the reaction rate constants 
of each reaction must go to infinity (resp. the 
relaxation times go to zero), as we have discussed 
in section 3 for the case of a binary mixture. 
It seems evident that the reaction rate constants 
must be infinitely large if local chemical equili- 
brium is required for a continuously changing 
flow field. If, on the other hand, the reactions 
are not assumed to be infinitely fast, the con- 
dition of local chemical equilibrium state cannot 
be fulfilled. 

The conclusions drawn here for the special 
case of a binary mixture lead to the following 
results : 

1. 

2. 

The production term of “equilibrium flows” 
is indefinite from the viewpoint of chemical 
kinetics. 
Using the law of mass-action as well as the 
other flow equations this indefinite equili- 
brium production term is given by the 
(su@erfluous) partial continuity equation. 

If “equilibrium flows” are considered, we must 
always bear in mind that the name “equilibrium 
flow” is in reality a contradiction in terms, as 
Vincenti and Kriiger ([l], p. 252) point out. 
Actually this limit can never be physically 
realized Nevertheless it is a frequently used 
approximation which is more or less valid. A 
fluid flow can never be in local equilibrium state 
but it can be very close to it. Then the chemical 
afhmities become very small (but not zero) and 
the reaction rate constants become very large 
(but not inhnite). 
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APPENDIX 

In the following the step-leading from equation (4.12) or 
(4.13) resp. to equation (4.14) is described. It follows from 
the law of mass-action (4.9) : 

0 + TdTa 
= -----z?*(l -x*3. 

282 

from the caloric equation of state (4.8) : 

1 dh 
- -- 

0 R 27 p 
=4+z*+(T+T,,) resp. 

z*(l - 2.2) 

4 + a:(1 + T,:TJ 

and from the Crocco relationship (4.11) : 

dH 
-=l-H,+$(l-2,. 
?U 8 

Then equation (4.13) becomes, after substitution of these If we substitute dH/aq, dO/Zv and da*/dq into the expression 
expressions : for n@‘/~ written above the final equation (4.14) is obtained. 

I 

TY_ 
u 

- - [4 + x:(1 f TDjT+)]; 

10 + T,iT&*(l - x*T[l - H, + (1 - X_~U~~~Z~~]'/ 
-__. 

+ I*) + (0 + T,iT8)%*(l - I*~) I 

Differentiation leads to 

$ = - [4 + x:(1 + T,'T,)] g 

1 - H, + (1 - ?wu:/(2hd 

[2e2(4 + 23 + (8 + T~T~)%*(I - ~*~j]2 

x 
I 
(0 + TD;T&4ez(2 -6a*' - 1'7% - r*(l - x*“) 

K (20(4 + 2’) (fl + 2TdT,! + (0 + T,‘T,)?z*(l - 2”)) 

co 

1 

(0 + TJTJa*(l - ~*~)lC!h 8, 6 i-L 
x;- - 

(‘rl 2e+4 + z*j + te + TJTk)%*( 1 - x*3 ?; 

The derivations &*ii)q and %/Zq can be expressed by SU:?q 
as follows. From equation (4.9) we have for constant pressure 

where (?a*/?@, is given above. Equation (4.8) leads to 

(4 + a*)’ E = [4 + $(l + T$Tb)] (4 + LY$~ 

? * 

Elimination of da*/?7 by the given expression leads to 

‘B = [4 + Y;U + T,/T,)](4 + x*)$4 + Y*)- 
ill 

+ (4T,jT, + H(4 + a:(1 f TD, T,I]) r*f 1 - Y*‘) 

x (e + T,,'T,)/l28'); -' 

From equation (4.11) we obtain 

?H 
-= 
L??j 

l-H,++ZL’) $ 
-6 1 . 

TERMES DE PRODUCTION DANS DES ECOULEMENTS AVEC REACTION 
D’EQUILIBRE, CAS D’UNE COUCHE LIh4ITE LAMINAIRE D’UN MELANGE BINAIRE 

R&mm&-Pour un Ccoulement de milange binaire en changement continu et suppod en kquilibre chimique 
local, la concentration des esp&ces est uniquement d&erminb par la loi d’action de masse comme une 
fonction de chacune des deux variables thermodynamiques indipendantes telles que tempCrature et 
pression. Ceci implique des vitesses de r&action infiniment grandes qui conduisent & des vitesses indttinies 
de production d’e@ces. L’equation de continuit6 est superflue &ant remplacte par la loi d’action de 
masse. Cette equation de continuitt peut par ailleurs Otre utili&e en relation avec les autres tquations aussi 
bien que la loi d’action de masse pour dkterminer cette vitesse de production en &tat d’kquilibre. On 
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montre que pour une couche hmite sur plaque plane, sous certaincs conditions, le profil m162/c( est un 

pro61 en similitude qui peut hre mis sous une fonne analytique. Darts cette expression mt; est la vitesse de 
production de I’esp&e A, 6 Npaisseur de la couche limite et p la viscositt. Ce profil d%quilibre, les protils 

d’equilibre de concentration et de tempirature sont compares avec les profilscorrespondants hors equilibre. 
Les protils d’tquilibre semblent &re des profils limites, approches asymptotiquement a des distances 

infinies. 

DIE PRODUKTIONSDICHTEN CHEMISCH REAGIERENDER 
GLEICHGEWICHTSSTRC)MUNGEN, DISKIJMERT FUR DIE LAMINARE 

GRENZSCHICHTSTRt)MUNG EINES BINiiREN GEMISCHES 

Zusammatf&aUUg-Refmdet sich ein stromendes f$niirgemisch im lokalen chemischen Gleichgewicht, 

so ist dessen Konzentration durch das Massenwirkungsgesetz als Funktion zweier thermodynamischer 
Variabler wie Tempera& und Druck bestimmt. Dies bedeutet unendlich grosse Reaktionsgeschwindig- 
keiten, die Produktionsdichten sind unbestimmt. Das Massenwirkungsgesetz tritt an die Stelle der 
partiellen Kontinuitiitsgleichung, die ihrerseits xusammen mit den anderen Bilanzgleichungen und dem 

Massenwirkungsgesetz die Produktionsdichte im Gleichgewicht festlegt. Es wird gexeigt, dass unter 

gewissen Annahmen das Profil rn’jtS/~ ftir die Grenzschichtstr6mung entlang einer ebenen Platte 

Bhnlich ist. Darin bedeuten rn: die Produktionsdichte der Teilchensorte A, 6 die Grenzschichtdicke und U 
die ViskositSit. Dieses Gleichgewichtsprofu wie such das der Konzentration und das der Temperatur 
werden mit entsprechenden Nichtgleichgewichtsprofilen verglichen. Die Gleichgewichtsprotile scheinen 

Grenzprofile darzustellen. die nach unendlich grosser Lauflgnge asymptotisch erreicht werden. 

CKOPOCTb OBPA30BAHMR IIPOAYIETA PEAKIJIIII B XtlMWIECKM 
PEAlWPYIOIIJMX PABHOBECHbIX IIOTOKAX B CJIYYAE TEVEHMfI 

EEIHAPHOR CMECII B IIOI’PAHWIHOM CJIOE 

AMHOTUHJU~-B cnysae HenpepbrBHo uaMeHHronserocx nonH TeUeHUB 6UHapHoU cMecU, 
HaxoBHrrreUcx B COCTORHUW noKanbHor0 xUUUUecKor0 paaaoeecwrz, KoUrreHTpaUUU peareHToB 

oUHoaKavH0 0npenenBeTcfl aaKoUoU BeWrByromUx Uacc KaK ~$yri~qUa nro6brx BByx UeaaBUcU- 
ME TepUoBuHaUuUecKux nepenrerrrrbrx, KaK, Kanpumep, TernepaTypa u BaBJreHue. 3~0 
OaHaYaeT 6eCKOHeYHO 6onburue CKOpOCTU peaKUUU, BblablBaIomUe 6eCKOEeUUW CKOpOCTU 

o6paaoBawuU npOBJ’KTa. ‘YpaBHeHUe HepaBpbIBHOCTU gnB OTBeJIbHbrX peareHTOB BaMeHReTCR 

Bbrpa?KeHueU aaKOHa HeticTByrorqUx Mace. C npyroi c~opo~br, BTO ypaBHeHHe YOmeT 6brt7, 
UCnOJIbBOBaHO BMeCTe C BpyrUMU ypaBHeHUHMH HBUUWHUR, a TPKUie C BbIpaYKeHHeM BaKOHa 

AeUCTBylomUX MaCC AJIB OlIpeUeBeHUU CKOpOCTU 06paBOBaHUB UpOUy-KTa B PaBIiOBKCHOM 
COCTOBHUU. nanee noKaaaH0, BTO BBU TeqeauR B norpaHuUUom cnoe Ua ns0cKolt nnacTriUe 

npu 0npeBeneHHbrx Bonyrrrenuxx npo@nb m.* osa/p RBJWeTCU aBTOMOBeBbHbIM U MOUteT 6rzrr, 
npU6JHiW2HHO npeHCTaBBeH B aHarruTUYeCKOY aamKHyTOM Brine. B BTOM BnpaHreHuu md*- 
CKOpOCTb 06paBOBaHUH KOMnOHeHTa A, ?l-TOJUUUHa nOrpaHHUHOr0 CJlOB U p-BRBKOCTB. 

DpOBOBUTCR CpaBHeHUe BTOrO paBHOBeCHOr0 llpO@%JKi, a TaKHIe paBHOBeCHbIX npO@UneU 

KOHUeHTpauUU U TeMnepaTypbl C COOTBetiTByrOmUMU HepaBHOBeCHYYU IIpOqtUJIUMU. &‘iS 

CpaBHeHUR BUAHO, YTO paBHOBeCHble lIpO@UnU UBJUUOTCR npexenOM, K KOTOpOMy npabnu- 
UWoTCR HepaBHOBeCHble npOt@nU npU yCTpeUJK’HUU KOOpBUHaTBl K 6eCKOHeYHOCTU. 


